تخمین تبخیر- تعرق گیاه مرجع درون گل‌خانه با استفاده از شبکه‌های عصبی مصنوعی

Authors: not saved
Abstract:

امروزه شبکه‌های عصبی مصنوعی کاربرد بسیاری در مسائل مختلف مهندسی آب که رابطه و الگوی مشخصی بین عوامل مؤثر بر وقوع یک پدیده وجود ندارد، پیدا کرده‌اند. در این پژوهش جهت تخمین تبخیر- تعرق مرجع داخل گل‌خانه با استفاده از شبکه‌های عصبی مصنوعی، از داده‌های هواشناسی اندازه‌گیری شده داخل گل‌خانه و همچنین داده‌های اندازه‌گیری شده خارج گل‌خانه استفاده گردید. در این پژوهش از شبکه‌های عصبی مصنوعی با ساختار پرسپترون چند لایه و الگوریتم یادگیری پس انتشار خطا با یک لایه پنهان جهت تخمین تبخیر- تعرق گیاه مرجع استفاده شد. نتایج حاصل از این بررسی نشان داد که با استفاده از شبکه‌های عصبی مصنوعی می‌توان تبخیر- تعرق گیاه مرجع (0ET) را با دقت مناسبی تخمین زد. شبکه عصبی مصنوعی با ورودی‌های تابش خارج از جو، دمای حداقل و حداکثر اندازه‌گیری شده، ساعت آفتابی و فشار بخار واقعی محاسبه شده در داخل گل‌خانه با جذر میانگین مربعات خطا (RMSE) برابر 1/1 میلی‌متر در روز بهترین نتیجه را جهت تخمین 0ET ارایه داد. این عمل برای داده‌های خارج از گل‌خانه نیز انجام شد که شبکه‌های عصبی مصنوعی با داده‌های ورودی دمای حداقل و حداکثر و ساعت آفتابی اندازه‌گیری شده در خارج از گل‌خانه با RMSE برابر 01/1 میلی‌متر در روز، بهترین نتیجه را جهت تخمین 0ET ارایه داد.  

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

پیش‌بینی تبخیر-تعرق مرجع با استفاده از شبکه‌های عصبی مصنوعی RBF ،MLP SVM

تخمین تبخیر-تعرق گیاه مرجع یکی از مهم‌ترین مؤلفه‌ها در بهینه‌سازی مصرف آب کشاورزی و مدیریت منابع آب است. پیش‌بینی تبخیر-تعرق مرجع روزانه و هفتگی می‌تواند در پیش‌بینی نیاز آبی گیاهان و برنامه‌ریزی کوتاه‌مدت آبیاری مورداستفاده قرار گیرد. هدف از این تحقیق، ارزیابی عملکرد سه نوع شبکه عصبی مصنوعی MLP(پرسپترون چندلایه)، RBF (شبکه تابع پایه‌ای شعاعی)، SVM (ماشین بردار پشتیبان) در پیش‌بینی تبخیر-تعرق م...

full text

تخمین تبخیر و تعرق مرجع روزانه به کمک مدل درخت تصمیمM5 و شبکه عصبی مصنوعی

تعیین دقیق آب مصرفی گیاه باعث افزایش راندمان آبیاری و بهبود مدیریت آب در مزرعه را دنبال دارد. تبخیر و تعرق یک از اجزای اصلی چرخه­ی هیدرولوژی محسوب می­شود و برآورد دقیق آن در مدیریت منابع آب نقش اساسی دارد. در این تحقیق به ارزیابی مدل درختی  M5  و مدل شبکه­ی عصبی تحت شرایط مختلف حداقل داده­ی اقلیمی در یک منطقه­ی خشک سرد پرداخته شد. داده­های مورد استفاده در این تحقیق شامل دمای حداقل و حداکثر، رطو...

full text

ارزیابی کارآیی دو نرم‌افزار شبکه عصبی مصنوعی در پیش‌بینی تبخیر- تعرق گیاه مرجع

در این تحقیق، کارائی دو نرم­افزارشبکه عصبی مصنوعی (ANN) در برآورد تبخیر-تعرق گیاه مرجع (ET0) بررسی گردید. بدین منظور از داده­های 2 سال لایسیمتری به عنوان ارقام شاهد برای ارزیابی استفاده شده و دو نرم­افزار مرسوم NS وNW  با قابلیت به­کارگیری آلگوریتم­های متفاوت، به­کار رفت. جهت ارزیابی اجرای دو نرم­افزار برای آرایش­ها، قواعد یادگیری و توابع محرک مختلف، از شاخص­های آماری جذر میانگین مربعات خطا (RM...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 16  issue 1

pages  107- 121

publication date 2012-07-25

By following a journal you will be notified via email when a new issue of this journal is published.

Keywords

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023